ORNL research reveals new challenges for mercury cleanup

Mercury Cycle

Oak Ridge National Laboratory researchers are learning more about the microbial processes
that convert elemental mercury into methylmercury. (Submitted image)

More forms of mercury can be converted to deadly methylmercury than previously thought, according to a study published Sunday in Nature Geoscience. The discovery provides scientists with another piece of the mercury puzzle, bringing them one step closer to understanding the challenges associated with mercury cleanup.

Earlier this year, a multidisciplinary team of researchers at Oak Ridge National Laboratory discovered two key genes that are essential for microbes to convert oxidized mercury to methylmercury, a neurotoxin that can penetrate skin and at high doses affect brain and muscle tissue, causing paralysis and brain damage.

The discovery of how methylmercury is formed answered a question that had stumped scientists for decades, and the findings published this week build on that breakthrough.

Most mercury researchers have believed that microbes could not convert elemental mercury—which is volatile and relatively inert—into methylmercury. Instead of becoming more toxic, they reasoned that elemental mercury would bubble out of water and dissipate. That offered a solution for oxidized mercury, which dissolves in water. By converting oxidized mercury into elemental mercury, they hoped to eliminate the threat of methylmercury contamination in water systems.

ORNL’s study and a parallel study reported by Rutgers University, however, suggest that elemental mercury is also susceptible to bacterial manipulation, a finding that makes environmental cleanup more challenging.

“Communities of microorganisms can work together in environments that lack oxygen to convert elemental mercury to methylmercury,” study leader Baohua Gu said. “Some bacteria remove electrons from elemental mercury to create oxidized mercury, while others add a methyl group to produce methylmercury.”

Mercury is a toxin that spreads around the globe mainly through the burning of coal, other industrial uses, and natural processes such as volcanic eruptions, and various forms of mercury are widely found in sediments and water. Methylmercury bioaccumulates in aquatic food chains, especially in large fish.

The fight against mercury pollution involves scientists with expertise in chemistry, computational biology, microbiology, neutron science, biochemistry, and bacterial genetics. Other ORNL efforts are focusing on when, where, and why bacteria are producing methylmercury.

“Our research allows us to understand generally where and how bacteria might produce methylmercury so that we can target those areas in the future,” said ORNL’s Liyuan Liang, a co-author and director of the mercury research program, which is funded by the U.S. Department of Energy. “We are trying to understand the process of microbial mercury methylation. Once we understand the process, we can begin to form solutions to combat mercury pollution.”

This research was funded by the DOE Office of Science. ORNL co-authors of the paper, titled “Oxidation and Methylation of Dissolved Elemental Mercury by Anaerobic Bacteria,” are Gu and Haiyan Hu, Hui Lin, Wang Zheng, Stephen Tomanicek, Alexander Johs, Dwayne Elias, and Liyuan Liang. Another co-author, Xinbin Feng, is from the State Key Laboratory of Environmental Geochemistry of China.

Advertisement
Advertisement

Join the club!

If you support Oak Ridge Today, please consider becoming a voluntary subscriber. You don't have to subscribe to read our stories, but your contribution will help us grow and improve our coverage.

We currently offer three subscription levels: $5, $10, or $25 per month. We accept payments through PayPal. You may also visit our subscription page for information on other options.

Thank you for your support.


Subscription options




Advertisements


Commenting Guidelines

We welcome comments, but we ask you to follow a few guidelines:

1) Please use your real name, including last name. Please also use a valid e-mail address. We do our best to confirm identities. If we are unable to confirm your identity or your comments don't appear to be posted using a real, full name, your comments may not post or may be removed.
2) Be civil. Don't insult others, attack their character, or get personal.
3) Stick to the issues.
4) No profanity.
5) Keep your comments to a reasonable length and to a reasonable number per article.

We reserve the right to remove any comments that violate these guidelines. Comments from readers posting for the first time may be held for review, and they will not be posted if they violate the guidelines. We urge you to do your best to follow the guidelines if you would like to see your comment posted. Thank you for your patience and understanding.

More information is available here.