• About
    • About Us
    • What We Cover
  • Advertise
    • Advertise
    • Our Advertisers
  • Contact
  • Donate
  • Send News

Oak Ridge Today

  • Home
  • Sign in
  • News
    • Business
    • Community
    • Education
    • Government
    • Health
    • Police and Fire
    • U.S. Department of Energy
    • Weather
  • Sports
    • High School
    • Middle School
    • Recreation
    • Rowing
    • Youth
  • Entertainment
    • Arts
    • Dancing
    • Movies
    • Music
    • Television
    • Theater
  • Premium Content
  • Obituaries
  • Classifieds

‘Atomic switcheroo’ explains origins of thin-film solar cell mystery

Posted at 10:40 am May 4, 2014
By Oak Ridge Today Staff Leave a Comment

Current Maps

Cross-sectional electron beam-induced current maps show the difference in cadmium telluride solar cells before (pictured above) and after (below) cadmium chloride treatment. The increased brightness after treatment indicates higher current collection at the grain boundaries. (Submitted photo)

Treating cadmium-telluride (CdTe) solar cell materials with cadmium-chloride improves their efficiency, but researchers have not fully understood why. Now, an atomic-scale examination of the thin-film solar cells led by Oak Ridge National Laboratory has answered this decades-long debate about the materials’ photovoltaic efficiency increase after treatment.

A research team from ORNL, the University of Toledo, and the U.S. Department of Energy’s National Renewable Energy Laboratory used electron microscopy and computational simulations to explore the physical origins of the unexplained treatment process. The results are published in Physical Review Letters, or PRL.

Thin-film CdTe solar cells are considered a potential rival to silicon-based photovoltaic systems because of their theoretically low cost per power output and ease of fabrication. Their comparatively low historical efficiency in converting sunlight into energy, however, has limited the technology’s widespread use, especially for home systems.

Research in the 1980s showed that treating CdTe thin films with cadmium-chloride significantly raises the cell’s efficiency, but scientists have been unable to determine the underlying causes. ORNL’s Chen Li, first author on the PRL study, explains that the answer lay in investigating the material at an atomic level.

“We knew that chlorine was responsible for this magical effect, but we needed to find out where it went in the material’s structure,” Li said. “Only by understanding the structure can we understand what’s wrong in this solar cell —why the efficiency is not high enough, and how can we push it further.”

By comparing the solar cells before and after chlorine treatment, the researchers realized that atom-scale grain boundaries were implicated in the enhanced performance. Grain boundaries are tiny defects that that normally act as roadblocks to efficiency because they inhibit carrier collection which greatly reduces the solar cell power.

Using state of the art electron microscopy techniques to study the thin films’ structure and chemical composition after treatment, the researchers found that chlorine atoms replaced tellurium atoms within the grain boundaries. This atomic substitution creates local electric fields at the grain boundaries that boost the material’s photovoltaic performance instead of damaging it.

The research team’s finding, in addition to providing a long-awaited explanation, could be used to guide engineering of higher-efficiency CdTe solar cells. Controlling the grain boundary structure, says Li, is a new direction that could help raise the cell efficiencies closer to the theoretical maximum of 32 percent light-to-energy conversion. Currently, the record CdTe cell efficiency is only 20.4 percent.

“We think that if all the grain boundaries in a thin film material could be aligned in same direction, it could improve cell efficiency even further,” Li said.

The team’s research appears as “Grain-Boundary-Enhanced Carrier Collection in CdTe Solar Cells.” Coauthors are ORNL’s Chen Li, Jonathan Poplawsky, Mark Oxley and Andrew Lupini; University of Toledo’s Yelong Wu, Naba Paudel, Wanjian Yin and Yanfa Yan; University of Tennessee’s Stephen Pennycook; University of Manchester’s Sarah Haigh; University of Oxford’s Timothy Pennycook; and NREL’s Mowafak Al-Jassim. Li and Oxley hold joint appointments at Vanderbilt University.

The research was supported by the Department of Energy’s Office of Energy Efficiency and Renewable Energy through the SunShot Initiative and the Office of Basic Energy Sciences. The work was sponsored in part by the UK Engineering and Physical Sciences Research Council and through a user project supported by ORNL’s Center for Nanophase Materials Sciences, or CNMS. This research used resources of the National Energy Research Scientific Computing Center. Yan acknowledges support from the Ohio Research Scholar Program.

CNMS is one of the five DOE Nanoscale Science Research Centers, NSRCs, supported by the DOE Office of Science, as premier national user facilities for interdisciplinary research at the nanoscale. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE’s Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos national laboratories. For more information about the DOE NSRCs, please visit http://science.energy.gov/bes/suf/user-facilities/nanoscale-science-research-centers/.

Filed Under: Front Page News, Oak Ridge National Laboratory, Science, U.S. Department of Energy Tagged With: Andrew Lupini, cadmium-chloride, cadmium-telluride, CdTe, cell efficiency, Center for Nanophase Materials Sciences, Chen Li, chlorine, CNMS, DOE, energy, Grain-Boundary-Enhanced Carrier Collection in CdTe Solar Cells, Jonathan Poplawsky, Mark Oxley, Mowafak Al-Jassim, Naba Paudel, Nanoscale Science Research Centers, National Energy Research Scientific Computing Center, National Renewable Energy Laboratory, NREL, NSRC, Oak Ridge National Laboratory, Office of Basic Energy Sciences, Office of Energy Efficiency and Renewable Energy, Ohio Research Scholar Program, ORNL, Physical Review Letters, PRL, Sarah Haigh, solar cell, Stephen Pennycook, sunlight, SunShot Initiative, tellurium, Timothy Pennycook, U.S. Department of Energy, UK Engineering and Physical Sciences Research Council, University of Manchester, University of Oxford, University of Tennessee, University of Toledo, Vanderbilt University, Wanjian Yin, Yanfa Yan, Yelong Wu

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recent Posts

  • ORAU and American Museum of Science and Energy Foundation formalize partnership to advance Manhattan Project 2.0
  • Author and Law Professor Derek W. Black to Speak on Public Education and Democracy
  • Anderson County Chamber Headquarters Dedication Set for October 17
  • ORISE announces winners of 2025 Future of Science Awards
  • SL Tennessee Supports New Anderson County Chamber Headquarters
  • ORAU 2025 Pollard Scholarship recipients announced
  • Democratic Women’s Club Hosts State Rep. Sam McKenzie
  • Flatwater Tales Storytelling Festival Announces 2025 Storytellers
  • Laser-Engraved Bricks Will Line Walkway of New Chamber Headquarters
  • Democratic Women’s Club to Discuss Climate Change, Energy and Policy

Search Oak Ridge Today

Copyright © 2025 Oak Ridge Today