• About
    • About Us
    • What We Cover
  • Advertise
    • Advertise
    • Our Advertisers
  • Contact
  • Donate
  • Send News
  • Subscribe

Oak Ridge Today

  • Home
  • Sign in
  • News
    • Business
    • Community
    • Education
    • Government
    • Health
    • Police and Fire
    • U.S. Department of Energy
    • Weather
  • Sports
    • High School
    • Middle School
    • Recreation
    • Rowing
    • Youth
  • Entertainment
    • Arts
    • Dancing
    • Movies
    • Music
    • Television
    • Theater
  • Premium Content
  • Obituaries
  • Classifieds

 

ORNL-grown oxygen ‘sponge’ presents path to better catalysts, energy materials

Posted at 7:30 am August 29, 2013
By Oak Ridge National Laboratory Leave a Comment

ORNL Oxygen Sponge

This schematic depicts a new ORNL-developed material that can easily absorb or shed oxygen atoms. (Photo courtesy ORNL)

Scientists at Oak Ridge National Laboratory have developed a new oxygen “sponge” that can easily absorb or shed oxygen atoms at low temperatures. Materials with these novel characteristics would be useful in devices such as rechargeable batteries, sensors, gas converters, and fuel cells.

Materials containing atoms that can switch back and forth between multiple oxidation states are technologically important but very rare in nature, said ORNL’s Ho Nyung Lee, who led the international research team that published its findings in Nature Materials.

“Typically, most elements have a stable oxidation state, and they want to stay there,” Lee said. “So far, there aren’t many known materials in which atoms are easily convertible between different valence states. We’ve found a chemical substance that can reversibly change between phases at rather low temperatures without deteriorating, which is a very intriguing phenomenon.”

Many energy storage and sensor devices rely on this valence-switching trick, known as a reduction-oxidation or “redox” reaction. For instance, catalytic gas converters use platinum-based metals to transform harmful emissions such as carbon monoxide into nontoxic gases by adding oxygen. Less expensive oxide-based alternatives to platinum usually require very high temperatures—at least 600 to 700 degrees Celsius—to trigger the redox reactions, making such materials impractical in conventional applications.

“We show that our multivalent oxygen sponges can undergo such a redox process at as low as 200 degrees Celsius, which is comparable to the working temperature of noble metal catalysts,” Lee said. “Granted, our material is not coming to your car tomorrow, but this discovery shows that multivalent oxides can play a pivotal role in future energy technologies.”

The team’s material consists of strontium cobaltite, which is known to occur in a preferred crystalline form called brownmillerite. Through an epitaxial stabilization process, the ORNL-led team discovered a new recipe to synthesize the material in a more desirable phase known as perovskite. The researchers have filed an invention disclosure on their findings.

“These two phases have very distinct physical properties,” Lee said. “One is a metal, the other is an insulator. One responds to magnetic fields, the other does not—and we can make it switch back and forth within a second at significantly reduced temperatures.”

The international team’s design and testing of this novel advanced material from scratch required multidisciplinary expertise and sophisticated tools from such places as Argonne National Laboratory and ORNL, including Argonne’s Advanced Photon Source and ORNL’s Center for Nanophase Materials Science, Lee said.

“As we showed in this study, only through the study of a well-defined system can we build a framework for the design of next-generation energy materials,” said co-author John Freeland of Argonne. “This insight was made possible by merging the capabilities at Oak Ridge and Argonne national labs for advanced synthesis and characterization of novel materials.”

The study, “Reversible redox reactions in an epitaxially stabilized SrCoOx oxygen sponge,” involved ORNL’s Hyoungjeen Jeen, Woo Seok Choi, Matthew Chisholm, Michael Biegalski, and Dongwon Shin; Argonne’s Chad Folkman, I-Cheng Tung, Dillon Fong, and John Freeland; and Hokkaido University’s Hiromichi Ohta.

The work was supported by the U.S. Department of Energy’s Office of Science.

The Advanced Photon Source at Argonne National Laboratory is one of five national synchrotron radiation light sources supported by DOE’s Office of Science to carry out applied and basic research to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels, provide the foundations for new energy technologies, and support DOE missions in energy, environment, and national security. To learn more about the Office of Science X-ray user facilities, visit the user facilities directory at http://science.energy.gov/user-facilities/basic-energy-sciences/.

The Center for Nanophase Materials Science is one of five DOE Nanoscale Science Research Centers, or NSRCs, national user facilities for interdisciplinary research at the nanoscale, supported by the DOE Office of Science. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize, and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE’s Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos National Laboratories. For more information about the DOE NSRCs, please visit http://science.energy.gov.

ORNL is managed by UT-Battelle for the Department of Energy’s Office of Science. DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov.

Filed Under: Oak Ridge National Laboratory, Science, Top Stories Tagged With: Advanced Photon Source, Argonne National Laboratory, brownmillerite, Center for Nanophase Materials Science, Chad Folkman, Dillon Fong, Dongwon Shin, Hiromichi Ohta, Ho Nyung Lee, Hokkaido University, Hyoungjeen Jeen, I-Cheng Tung, John Freeland, Matthew Chisholm, Michael Biegalski, Nanoscale Science Research Centers, Nature Materials, NSRC, Oak Ridge National Laboratory, Office of Science, ORNL, oxidation, oxygen atoms, oxygen sponge, perovskite, redox, reduction-oxidation, Reversible redox reactions in an epitaxially stabilized SrCoOx oxygen sponge, strontium cobaltite, U.S. Department of Energy, Woo Seok Choi

Advertisements

 



Join the club!

If you appreciate our work, please consider subscribing. Besides helping us, your subscription will give you access to our premium content.

Some of our stories are free, brought to you by Oak Ridge Today with help from our members—advertisers, subscribers, and sponsors.

But some are premium content, available only to members. Those are in-depth, investigative, or exclusive stories that are available only on Oak Ridge Today. They generally require significant time to report, write, and publish.

You can subscribe for as little as $5 per month.

You can read more about your options here.

We currently offer five primary subscription options to readers, and they include benefits.

Basic

  • Basic monthly subscription ($5 per month)—access premium content
  • Basic annual subscription ($60 per year)—access premium content

Pro

  • Pro monthly subscription ($10 per month)—access premium content, get breaking news emails first, and submit one press release or public service announcement per month
  • Pro annual subscription ($100 per year)—save $20 per year, access premium content, get breaking news emails first, and submit one press release or public service announcement per month

Temporary

  • Temporary access ($3 per week for two weeks)

We also have advanced subscription options. You can see them here.

We also accept donations. You can donate here.

If you prefer to send a check for a subscription or donation, you may do so by mailing one to:

Oak Ridge Today
P.O. Box 6064
Oak Ridge, TN 37831

Thank you for your consideration and for reading Oak Ridge Today. We appreciate your support.

Commenting Guidelines

We welcome comments, but we ask you to follow a few guidelines:

1) Please use your real name, including last name. Please also use a valid e-mail address.
2) Be civil. Don't insult others, attack their character, or get personal.
3) Stick to the issues.
4) No profanity.
5) Keep your comments to a reasonable length and to a reasonable number per article.

We reserve the right to remove any comments that violate these guidelines. Comments held for review, usually from those posting for the first time, may not post if they violate these guidelines. Thank you for your patience and understanding. Thank you also for reading Oak Ridge Today and for participating in the discussion.

More information is available here.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recent Posts

  • ORPD investigating fatal crash on South Illinois
  • SNS on hiatus for upgrade
  • County sees increase in infant deaths due to unsafe sleeping practices
  • ASAP of Anderson welcomes new executive director
  • Briceville Fire Department celebrates new station
  • Officers searching for suspect in fatal shooting
  • Oak Ridge to host movie premiere of ‘Oppenheimer’
  • Oak Ridge Schools to host panel discussion, documentary screening for ‘Oppenheimer’
  • Sam Bush to headline Summer Sessions concert
  • Anderson County government offices closed Monday, Tuesday

Search Oak Ridge Today

About Us

About Oak Ridge Today
What We Cover

How To

Advertise
Subscribe

Contact Us

Contact Oak Ridge Today

Copyright © 2023 Oak Ridge Today