Nearly 30 years after the discovery of high-temperature superconductivity, many questions remain, but an Oak Ridge National Laboratory team is providing insight that could lead to better superconductors.
Their work, published in Physical Review Letters, examines the role of chemical dopants, which are essential to creating high-temperature superconductors—materials that conduct electricity without resistance. The role of dopants in superconductors is particularly mysterious as they introduce non-uniformity and disorder into the crystal structure, which increases resistivity in non-superconducting materials.
By gaining a better understanding of how and why chemical dopants alter the behavior of the original (parent) material, scientists believe they can design superconductors that work at higher temperatures. This would make them more practical for real-world wire applications because it would lessen the extreme cooling required for conventional superconducting material. Existing “high-temperature superconductors” operate at temperatures in the range of negative 135 degrees Celsius and below. [Read more…]