• About
    • About Us
    • What We Cover
  • Advertise
    • Advertise
    • Our Advertisers
  • Contact
  • Donate
  • Send News

Oak Ridge Today

  • Home
  • Sign in
  • News
    • Business
    • Community
    • Education
    • Government
    • Health
    • Police and Fire
    • U.S. Department of Energy
    • Weather
  • Sports
    • High School
    • Middle School
    • Recreation
    • Rowing
    • Youth
  • Entertainment
    • Arts
    • Dancing
    • Movies
    • Music
    • Television
    • Theater
  • Premium Content
  • Obituaries
  • Classifieds

ORNL technique could set new course for extracting uranium from seawater

Posted at 1:41 pm December 17, 2015
By Oak Ridge National Laboratory Leave a Comment

ORNL-TOC-Graphic

Using high-energy X-rays, researchers discovered uranium is bound by adsorbent fibers in an unanticipated fashion. (Image by ORNL)

 

An ultra-high-resolution technique used for the first time to study polymer fibers that trap uranium in seawater may cause researchers to rethink the best methods to harvest this potential fuel for nuclear reactors.

The work of a team led by Carter Abney, a Wigner Fellow at the U.S. Department of Energy’s Oak Ridge National Laboratory, shows that the polymeric adsorbent materials that bind uranium behave nothing like scientists had believed. The results, gained through collaboration with the University of Chicago and detailed in a paper published in Energy and Environmental Science, highlight data made possible with X-ray Absorption Fine Structure spectroscopy performed at the Advanced Photon Source. The APS is a DOE Office of Science User Facility at Argonne National Laboratory.

“Despite the low concentration of uranium and the presence of many other metals extracted from seawater, we were able to investigate the local atomic environment around uranium and better understand how it is bound by the polymer fibers,” Abney said.

Surprisingly, the spectrum for the seawater-contacted polymer fibers was distinctly different from what was expected based on small molecule and computational investigations. Researchers concluded that for this system the approach of studying small molecule structures and assuming that they accurately represent what happens in a bulk material simply doesn’t work.

It is necessary to consider large-scale behavior to obtain the complete picture, highlighting the need for developing greater computational capabilities, according to Abney.

“This challenges the long-held assumption regarding the validity of using simple molecular-scale approaches to determine how these complex adsorbents bind metals,” Abney said. “Rather than interacting with just one amidoxime, we determined multiple amidoximes would have to cooperate to bind each uranium molecule and that a second metal that isn’t uranium also participates in forming this binding site.”

An amidoxime is the chemical group attached to the polymer fiber responsible for binding uranium.

Abney and colleagues plan to use this knowledge to design adsorbents that can harness the vast reserves of uranium dissolved in seawater. The payoff promises to be significant.

“Nuclear power production is anticipated to increase with a growing global population, but estimates predict only 100 years of uranium reserves in terrestrial ores,” Abney said. “There is approximately 1,000 times that amount dissolved in the ocean, which would meet global demands for the foreseeable future.”

Other authors of the paper, titled “XAFS investigation of polyamidoxime-bound uranyl contests the paradigm from small molecule studies,” are Richard Mayes, Vyacheslav Bryantsev, Gabriel Veith, and Sheng Dai of ORNL and Marek Piechowicz, Zekai Lin, and Wenbin Lin of the University of Chicago.

Research at ORNL was supported by DOE’s Office of Nuclear Energy while work at the University of Chicago was supported by NE’s Nuclear Energy University Program. Experiments were performed at the Advanced Photon Source and the National Energy Research Scientific Computing Centre, DOE Office of Science user facilities.

Copyright 2015 Oak Ridge Today. All rights reserved. This material may not be published, broadcast, rewritten, or redistributed.

Filed Under: Front Page News, Oak Ridge National Laboratory, Top Stories, U.S. Department of Energy Tagged With: Advanced Photon Source, APS, Argonne National Laboratory, Carter Abney, DOE Office of Science, Energy and Environmental Science, extracting uranium, Gabriel Veith, Marek Piechowicz, National Energy Research Scientific Computing Centre, nuclear reactors, Oak Ridge National Laboratory, Office of Nuclear Energy, ORNL, Richard Mayes, Sheng Dai, U.S. Department of Energy, University of Chicago, uranium, Vyacheslav Bryantsev, Wenbin Lin, Zekai Lin

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recent Posts

  • SL Tennessee Supports New Anderson County Chamber Headquarters
  • ORAU 2025 Pollard Scholarship recipients announced
  • Democratic Womens Club Hosts State Rep. Sam McKenzie
  • Flatwater Tales Storytelling Festival Announces 2025 Storytellers
  • Laser-Engraved Bricks Will Line Walkway of New Chamber Headquarters
  • Democratic Womens Club to Discuss Climate Change, Energy and Policy
  • Estate Jewelry Show at Karens Jewelers Features Celebrity Jewelry
  • Keri Cagle named new ORAU senior vice president and ORISE director
  • ORAU Annual Giving Campaign exceeds $100,000 goal+ORAU Annual Giving Campaign exceeds $100,000 goal More than $1 million raised in past 10 years benefits United Way and Community Shares Oak Ridge, Tenn. ORAU exceeded its goal of raising $100,000 in donations as part of its internal annual giving campaign that benefits the United Way and Community Shares nonprofit organizations. ORAU has raised more than $1 million over the past 10 years through this campaign. A total of $126,839 was pledged during the 2024 ORAU Annual Giving Campaign. Employees donate via payroll deduction and could earmark their donation for United Way, Community Shares or both. ORAU has remained a strong pillar in the community for more than 75 years, and we encourage our employees to consider participating in our annual giving campaign each year to help our less fortunate neighbors in need, said ORAU President and CEO Andy Page. Each one of our employees has the power to positively impact the lives of those who need help in the communities where we do business across the country and demonstrate the ORAU way taking care of each other. ORAU, a 501(c)(3) nonprofit corporation, provides science, health and workforce solutions that address national priorities and serve the public interest. Through our specialized teams of experts and access to a consortium of more than 150 major Ph.D.-granting institutions, ORAU works with federal, state, local and commercial customers to provide innovative scientific and technical solutions and help advance their missions. ORAU manages the Oak Ridge Institute for Science and Education (ORISE) for the U.S. Department of Energy (DOE). Learn more about ORAU at www.orau.org. Learn more about ORAU at www.orau.org. Like us on Facebook: https://www.facebook.com/OakRidgeAssociatedUniversities Follow us on X (formerly Twitter): https://twitter.com/orau Follow us on LinkedIn: https://www.linkedin.com/company/orau ###
  • Childrens Museum Gala Celebrates the Rainforest

Search Oak Ridge Today

Copyright © 2025 Oak Ridge Today