• About
    • About Us
    • What We Cover
  • Advertise
    • Advertise
    • Our Advertisers
  • Contact
  • Donate
  • Send News

Oak Ridge Today

  • Home
  • Sign in
  • News
    • Business
    • Community
    • Education
    • Government
    • Health
    • Police and Fire
    • U.S. Department of Energy
    • Weather
  • Sports
    • High School
    • Middle School
    • Recreation
    • Rowing
    • Youth
  • Entertainment
    • Arts
    • Dancing
    • Movies
    • Music
    • Television
    • Theater
  • Premium Content
  • Obituaries
  • Classifieds

HED: Silica ‘spiky screws’ could enhance industrial coatings, additive manufacturing

Posted at 12:47 am June 26, 2015
By Oak Ridge National Laboratory Leave a Comment

It took marine sponges millions of years to perfect their spike-like structures, but research mimicking these formations may soon alter how industrial coatings and 3-D printed objects are produced.

A molecular process developed by researchers at Oak Ridge National Laboratory paves the way for improved silica structure design by introducing microscopic, segmented screw-like spikes that can more effectively bond materials for commercial use.

The study, conducted by Jaswinder Sharma and his colleagues Panos Datskos and David Cullen, has been published in Angewandte Chemie International Edition. Authors said other applications of the screw-like spikes could include coatings for eyeglasses, television screens, commercial transportation, and even self-cleaning windows and roofs in rural and urban environments.

Created by emulsion droplets applied to a silica particle’s surface, the new, segmented spikes offer an alternative tool for material scientists and engineers that can better maintain and fuse bonds within a variety of microstructures.

Combined with tetraethyl orthosilicate, an additive molecule, the emulsion droplets begin to produce rod-like spikes whose growth can be controlled for silica structures and configured into new materials.

The development of a segmented spike comes as an enhanced version of previous research conducted by the team. Sharma explained that the screw-like shape of these spikes was achieved when temperature control was incorporated with the spike growth on preformed particles.

In previous experiments, the spikes appeared in a rod-like, linear shape, preventing the silica from bending into the diverse shapes Sharma’s team sought to create from the particle seeds.

“If you try to use these linear ones, they will lie down like a pen does,” Sharma said. “They won’t stand. But if you have the segmented, spiky screws or smooth spiky screws, they will stand. They are the better shape.”

According to the authors, the segmented spike’s most direct application rests on interface engineering and the ongoing advancements in additive manufacturing, another significant research area at ORNL, a U.S. Department of Energy laboratory.

With the spikes’ new shape, materials for bonding layers can maintain a stronger internal structure, lasting longer than previously used approaches.

“After awhile, the bonds break and layers start to delaminate,” Sharma said. “So unless you use something that keeps them sticking to each other, the material will tear apart.”

Authors also experimented with a hybrid structure made from silica and titania, confirming that the silica-based spike growth can work for other oxide materials as well.

While they noted the hybrid’s use in future processes, the authors said the spectrum of possibilities remains wide open for future researchers to explore.

“We actually developed a process to create new structures, but we didn’t focus on one application when we did that,” Sharma said. “We looked at a range of applications where this could fit, and we are now trying to explore all those directions.”

Funding for this research was provided ORNL’s Laboratory Directed Research and Development program.

Microscopy research was conducted as part of a user proposal at ORNL’s Center for Nanophase Materials Sciences.

Copyright 2015 Oak Ridge Today. All rights reserved. This material may not be published, broadcast, rewritten, or redistributed.

Filed Under: Front Page News, Oak Ridge National Laboratory, U.S. Department of Energy Tagged With: additive manufacturing, Angewandte Chemie International Edition, Center for Nanophase Materials Sciences, David Cullen, emulsion droplets, industrial coatings, Jaswinder Sharma, Laboratory Directed Research and Development, Oak Ridge National Laboratory, ORNL, Panos Datskos, screw-like spikes, spiky screws, tetraethyl orthosilicate, U.S. Department of Energy

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recent Posts

  • Author and Law Professor Derek W. Black to Speak on Public Education and Democracy
  • Anderson County Chamber Headquarters Dedication Set for October 17
  • ORISE announces winners of 2025 Future of Science Awards
  • SL Tennessee Supports New Anderson County Chamber Headquarters
  • ORAU 2025 Pollard Scholarship recipients announced
  • Democratic Womens Club Hosts State Rep. Sam McKenzie
  • Flatwater Tales Storytelling Festival Announces 2025 Storytellers
  • Laser-Engraved Bricks Will Line Walkway of New Chamber Headquarters
  • Democratic Womens Club to Discuss Climate Change, Energy and Policy
  • Estate Jewelry Show at Karens Jewelers Features Celebrity Jewelry

Search Oak Ridge Today

Copyright © 2025 Oak Ridge Today