• About
    • About Us
    • What We Cover
  • Advertise
    • Advertise
    • Our Advertisers
  • Contact
  • Donate
  • Send News

Oak Ridge Today

  • Home
  • Sign in
  • News
    • Business
    • Community
    • Education
    • Government
    • Health
    • Police and Fire
    • U.S. Department of Energy
    • Weather
  • Sports
    • High School
    • Middle School
    • Recreation
    • Rowing
    • Youth
  • Entertainment
    • Arts
    • Dancing
    • Movies
    • Music
    • Television
    • Theater
  • Premium Content
  • Obituaries
  • Classifieds

Helium ‘balloons’ offer new path to control complex materials

Posted at 9:29 am June 30, 2015
By Oak Ridge National Laboratory Leave a Comment

Helium Atoms into Crystalline Film

Inserting helium atoms (visualized as a red balloon) into a crystalline film (gold) allowed Oak Ridge National Laboratory researchers to control the material’s elongation in a single direction. (Submitted image)

 

Researchers at Oak Ridge National Laboratory have developed a new method to manipulate a wide range of materials and their behavior using only a handful of helium ions.

The team’s technique, published in Physical Review Letters, advances the understanding and use of complex oxide materials that boast unusual properties such as superconductivity and colossal magnetoresistance but are notoriously difficult to control.

For the first time, ORNL researchers have discovered a simple way to control the elongation of a crystalline material along a single direction without changing the length along the other directions or damaging the crystalline structure. This is accomplished by adding a few helium ions into a complex oxide material and provides a never before possible level of control over magnetic and electronic properties.

“By putting a little helium into the material, we’re able to control strain along a single axis,” said ORNL’s Zac Ward, who led the team’s study. “This type of control wasn’t possible before, and it allows you to tune material properties with a finesse that we haven’t previously had access to.”

The intricate way in which electrons are bound inside complex oxides means that any strain—stretching, pulling, or pushing of the structure—triggers changes in many different electronic properties. This ripple effect complicates scientists’ ability to study or make use of the finicky materials.

The researchers demonstrated the technique on a common oxide material known as LSMO, but they anticipate the technique will be widely applicable to both functionality driven materials science research and fundamental physics studies.

“Complex oxides are where we expect an immediate impact, but this technique should be an important new tool to use on any material where crystal symmetry affects functionality,” Ward said.

The team’s work is a step toward bringing complex materials into commercial applications, which would greatly benefit from the ability to tune material properties with processing similar to current semiconductor technologies.

“Our strain doping technique demonstrates a path to achieving this need, as it can be implemented using established ion implantation infrastructure in the semiconductor industry,” Ward said.

The method uses a low-energy ion gun to add small numbers of helium ions into the material after it has been produced. The process is also reversible; the helium can be removed by heating the material to high temperatures in vacuum. Previously developed strain tuning methods modify all directions in a material and cannot be altered or reversed afterwards.

“We can easily control the amount of strain and how deep that strain is inside the material,” Ward said. “By controlling the number of helium atoms inserted into an epitaxial film, we select a strain state in one direction while the other two directions are held in place by the substrate.”

The team’s experimental technique will also benefit theoretical research that seeks to model complex materials to predict and understand their behavior.

“The complexity of these materials requires a huge equation to explain their behaviors,” Ward said. “Normal strain tuning methods require you to change many variables in that equation which means that you don’t really know which one is giving you a specific reaction. In our case, there’s one variable. You can feed in a single term and try to break through that complexity a little bit by simplifying it. This is a great method to experimentally probe theoretical models.”

The paper is published as “Strain doping: Reversible single axis control of a complex oxide lattice via helium implantation.” Coauthors are ORNL’s Hangwen Guo, Shuai Dong, Philip Rack, John Budai, Christianne Beekman, Zheng Gai, Wolter Siemons, C.M. Gonzalez, R. Timilsina, Anthony Wong, Andreas Herklotz, Paul Snijders, Elbio Dagotto, and Thomas Ward.

The study was supported by the U.S. Department of Energy’s Office of Science and used resources at the Center for Nanophase Materials Sciences, a DOE Office of Science User Facility at ORNL.

UT-Battelle manages ORNL for the Department of Energy’s Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov/.

Filed Under: Front Page News, Oak Ridge National Laboratory, Top Stories, U.S. Department of Energy Tagged With: Andreas Herklotz, Anthony Wong, C.M. Gonzalez, Center for Nanophase Materials Sciences, Christianne Beekman, crystalline film, crystalline material, Elbio Dagotto, Hangwen Guo, helium, John Budai, LSMO, Oak Ridge National Laboratory, Office of Science, ORNL, oxide material, Paul Snijders, Philip Rack, Physical Review Letters, R. Timilsina, Shuai Dong, strain doping, Strain doping: Reversible single axis control of a complex oxide lattice via helium implantation, Thomas Ward, U.S. Department of Energy, Wolter Siemons, Zac Ward, Zheng Gai

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

More U.S. Department of Energy News

Kairos Power begins construction on demonstration reactor​

Kairos Power has started construction on a test nuclear reactor in west Oak Ridge. The Hermes Low-Power Demonstration Reactor is the first of its type to be approved for construction by the U.S. Nuclear Regulatory … [Read More...]

Availability of the draft environmental assessment for off-site depleted uranium manufacturing (DOE/EA-2252)

The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA) announces the availability of a Draft Environmental Assessment (EA) for Off-Site Depleted Uranium Manufacturing, which analyzes the … [Read More...]

Manhattan Project Park: Walk through Wheat

You can walk through Wheat with a National Park Service ranger on Saturday, July 13, and learn more about the history of this community before the Manhattan Project. Wheat was in an area that is now west Oak Ridge, … [Read More...]

Crews preparing for first demolition of uranium enrichment building at Y-12

From U.S. Department of Energy "EM Update" email newsletter U.S. Department of Energy Office of Environmental Management crews at Oak Ridge are moving closer toward completing the first-ever demolition of a former … [Read More...]

K-25 cleanup shifting to groundwater

Crews are expected to finish remediating soil, reversing or stopping environmental damage at the former K-25 site in west Oak Ridge this year, and federal cleanup managers are shifting their focus to groundwater. It's … [Read More...]

More DOE

Recent Posts

  • Flatwater Tales Storytelling Festival Announces 2025 Storytellers
  • Laser-Engraved Bricks Will Line Walkway of New Chamber Headquarters
  • Democratic Women’s Club to Discuss Climate Change, Energy and Policy
  • Estate Jewelry Show at Karen’s Jewelers Features Celebrity Jewelry
  • Keri Cagle named new ORAU senior vice president and ORISE director
  • ORAU Annual Giving Campaign exceeds $100,000 goal+ORAU Annual Giving Campaign exceeds $100,000 goal More than $1 million raised in past 10 years benefits United Way and Community Shares Oak Ridge, Tenn. —ORAU exceeded its goal of raising $100,000 in donations as part of its internal annual giving campaign that benefits the United Way and Community Shares nonprofit organizations. ORAU has raised more than $1 million over the past 10 years through this campaign. A total of $126,839 was pledged during the 2024 ORAU Annual Giving Campaign. Employees donate via payroll deduction and could earmark their donation for United Way, Community Shares or both. “ORAU has remained a strong pillar in the community for more than 75 years, and we encourage our employees to consider participating in our annual giving campaign each year to help our less fortunate neighbors in need,” said ORAU President and CEO Andy Page. “Each one of our employees has the power to positively impact the lives of those who need help in the communities where we do business across the country and demonstrate the ORAU way – taking care of each other.” ORAU, a 501(c)(3) nonprofit corporation, provides science, health and workforce solutions that address national priorities and serve the public interest. Through our specialized teams of experts and access to a consortium of more than 150 major Ph.D.-granting institutions, ORAU works with federal, state, local and commercial customers to provide innovative scientific and technical solutions and help advance their missions. ORAU manages the Oak Ridge Institute for Science and Education (ORISE) for the U.S. Department of Energy (DOE). Learn more about ORAU at www.orau.org. Learn more about ORAU at www.orau.org. Like us on Facebook: https://www.facebook.com/OakRidgeAssociatedUniversities Follow us on X (formerly Twitter): https://twitter.com/orau Follow us on LinkedIn: https://www.linkedin.com/company/orau ###
  • Children’s Museum Gala Celebrates the Rainforest
  • Jim Sears joins ORAU as senior vice president
  • Oak Ridge Housing Authority Receives Funding Assistance of up to $51.8 Million For Renovating Public Housing and Building New Workforce Housing
  • Two fires reported early Friday

Search Oak Ridge Today

Copyright © 2025 Oak Ridge Today