• About
    • About Us
    • What We Cover
  • Advertise
    • Advertise
    • Our Advertisers
  • Contact
  • Donate
  • Send News

Oak Ridge Today

  • Home
  • Sign in
  • News
    • Business
    • Community
    • Education
    • Government
    • Health
    • Police and Fire
    • U.S. Department of Energy
    • Weather
  • Sports
    • High School
    • Middle School
    • Recreation
    • Rowing
    • Youth
  • Entertainment
    • Arts
    • Dancing
    • Movies
    • Music
    • Television
    • Theater
  • Premium Content
  • Obituaries
  • Classifieds

ORNL’s CASL, Westinghouse simulate neutron behavior in nuclear reactor core

Posted at 1:06 pm February 19, 2014
By Oak Ridge National Laboratory Leave a Comment

AP1000 Pressurized Water Reactor

CASL is developing and applying new modeling and simulation technology (Virtual Environment for Reactor Applications Core Simulator or VERA-CS) to resolve and predict the detailed neutron distribution of the power-generation reactor core residing in reactor vessels. (Image courtesy of Westinghouse)

Test run signals emergence of the next generation in nuclear power reactor analysis tools

Scientists and engineers developing more accurate approaches to analyzing nuclear power reactors have successfully tested a new suite of computer codes that closely model “neutronics”—the behavior of neutrons in a reactor core.

Technical staff at Westinghouse Electric Company LLC, supported by the research team at the Consortium for Advanced Simulation of Light Water Reactors, or CASL, used the Virtual Environment for Reactor Applications core simulator (VERA-CS) to analyze its AP1000 advanced pressurized water reactor. The testing focused on modeling the startup conditions of the AP1000 plant design.

“In our experience with VERA-CS, we have been impressed by its accuracy in reproducing past reactor startup measurements,” said Bob Oelrich, manager of pressurized water reactor, or PWR, core methods at Westinghouse. “These results give us confidence that VERA-CS can be used to anticipate the conditions that will occur during the AP1000 reactor startup operations. This new modeling capability will allow designers to obtain higher-fidelity power distribution predictions in a reactor core and ultimately further improve reactor performance.”

The AP1000 reactor is an advanced reactor design with enhanced passive safety and improved operational performance that builds on decades of Westinghouse’s experience with PWR design. The first eight units are currently being built in China and the United States, and they represent the first Generation III+ reactor to receive design certification from the U.S. Nuclear Regulatory Commission.

CASL is a U.S. Department of Energy Innovation Hub established at Oak Ridge National Laboratory, a part of DOE’s national laboratory system. The consortium core partners are a strategic alliance of leaders in nuclear science and engineering from government, industry, and academia.

“At CASL, we set out to improve reactor performance with predictive, science-based, simulation technology that harnesses world-class computational power,” said CASL Director Doug Kothe. “Our challenge is to advance research that will allow power uprates and increase fuel burn-up for U.S. nuclear plants. In order to do this, CASL is meeting the need for higher-fidelity, integrated tools.”

During the first generation of nuclear energy, performance and safety margins were held at conservative levels as industry and researchers gained experience with the operation and maintenance of what was then a new and complex technology. During the past 50 years, nuclear scientists and engineers have gained a deeper understanding of the reactor processes, further characterizing nuclear reactor fuel and structure materials.

By making use of newly available computing resources, CASL’s research aims for a step increase in the improvements in reactor operations that have occurred during the last several decades.

“CASL has been using modern high-performance computing platforms such as ORNL’s Titan, working in concert with the INL Fission computer system, for modeling and simulation at significantly increased levels of detail,” said CASL Chief Computational Scientist John Turner. “However, we also recognized the need to deliver a product that is suitable for industry-sized computing platforms.”

With this recognition, CASL designed the Test Stand project to try out tools such as VERA-CS in industrial applications. CASL partner Westinghouse was selected as the host for the first trial run of the new VERA nuclear reactor core simulator (VERA-CS). Westinghouse chose a real-world application for VERA-CS: the reactor physics-analysis of the AP1000 PWR, which features a core design with several advanced features. Using VERA-CS to study the AP1000 provides information to further improve the characterization of advanced cores compared to traditional modeling approaches.

Westinghouse’s test run on VERA-CS focused on modeling one aspect of reactor physics called “neutronics,” which describes the behavior of neutrons in a reactor core. While neutronics is only one of VERA’s capabilities, the results provided by VERA-CS for the AP1000 PWR enhance Westinghouse’s confidence in their startup predictions and expand the validation of VERA by incorporating the latest trends in PWR core design and operational features.

“VERA-CS exhibited remarkable agreement with plant measurements as well as reference numerical solutions for startup cores, and for these reasons we decided to apply it, successfully, to the AP1000 start-up simulations,” said Westinghouse Fellow Engineer Fausto Franceschini.

The CASL team now is working on extending the suite of simulation capabilities to the entire range of operating conditions for commercial reactors, including full-power operation with fuel depletion and fuel cycle reload.

 

Filed Under: Business, Front Page News, Oak Ridge National Laboratory, Science, U.S. Department of Energy Tagged With: AP1000, Bob Oelrich, CASL, Consortium for Advanced Simulation of Light Water Reactors, DOE, Doug Kothe, engineering, Fausto Franceschini, Generation III+ reactor, Innovation Hub, John Turner, neutron, neutronics, nuclear reactor, nuclear science, Oak Ridge National Laboratory, ORNL, pressurized water reactor, PWR, reactor analysis, reactor core, U.S. Department of Energy, U.S. Nuclear Regulatory Commission, VERA-CS, Virtual Environment for Reactor Applications core simulator, Westinghouse, Westinghouse Electric Company LLC

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recent Posts

  • ORISE announces winners of 2025 Future of Science Awards
  • SL Tennessee Supports New Anderson County Chamber Headquarters
  • ORAU 2025 Pollard Scholarship recipients announced
  • Democratic Women’s Club Hosts State Rep. Sam McKenzie
  • Flatwater Tales Storytelling Festival Announces 2025 Storytellers
  • Laser-Engraved Bricks Will Line Walkway of New Chamber Headquarters
  • Democratic Women’s Club to Discuss Climate Change, Energy and Policy
  • Estate Jewelry Show at Karen’s Jewelers Features Celebrity Jewelry
  • Keri Cagle named new ORAU senior vice president and ORISE director
  • ORAU Annual Giving Campaign exceeds $100,000 goal+ORAU Annual Giving Campaign exceeds $100,000 goal More than $1 million raised in past 10 years benefits United Way and Community Shares Oak Ridge, Tenn. —ORAU exceeded its goal of raising $100,000 in donations as part of its internal annual giving campaign that benefits the United Way and Community Shares nonprofit organizations. ORAU has raised more than $1 million over the past 10 years through this campaign. A total of $126,839 was pledged during the 2024 ORAU Annual Giving Campaign. Employees donate via payroll deduction and could earmark their donation for United Way, Community Shares or both. “ORAU has remained a strong pillar in the community for more than 75 years, and we encourage our employees to consider participating in our annual giving campaign each year to help our less fortunate neighbors in need,” said ORAU President and CEO Andy Page. “Each one of our employees has the power to positively impact the lives of those who need help in the communities where we do business across the country and demonstrate the ORAU way – taking care of each other.” ORAU, a 501(c)(3) nonprofit corporation, provides science, health and workforce solutions that address national priorities and serve the public interest. Through our specialized teams of experts and access to a consortium of more than 150 major Ph.D.-granting institutions, ORAU works with federal, state, local and commercial customers to provide innovative scientific and technical solutions and help advance their missions. ORAU manages the Oak Ridge Institute for Science and Education (ORISE) for the U.S. Department of Energy (DOE). Learn more about ORAU at www.orau.org. Learn more about ORAU at www.orau.org. Like us on Facebook: https://www.facebook.com/OakRidgeAssociatedUniversities Follow us on X (formerly Twitter): https://twitter.com/orau Follow us on LinkedIn: https://www.linkedin.com/company/orau ###

Search Oak Ridge Today

Copyright © 2025 Oak Ridge Today