• About
    • About Us
    • What We Cover
  • Advertise
    • Advertise
    • Our Advertisers
  • Contact
  • Donate
  • Send News

Oak Ridge Today

  • Home
  • Sign in
  • News
    • Business
    • Community
    • Education
    • Government
    • Health
    • Police and Fire
    • U.S. Department of Energy
    • Weather
  • Sports
    • High School
    • Middle School
    • Recreation
    • Rowing
    • Youth
  • Entertainment
    • Arts
    • Dancing
    • Movies
    • Music
    • Television
    • Theater
  • Premium Content
  • Obituaries
  • Classifieds

ORNL recipe for oxide interface perfection opens path to novel materials

Posted at 11:30 am November 25, 2012
By Oak Ridge National Laboratory Leave a Comment

By tweaking the formula for growing oxide thin films, researchers at the Oak Ridge National Laboratory achieved virtual perfection at the interface of two insulator materials.

This finding, published in the journal Advanced Materials, could have significant ramifications for creation of novel materials with applications in energy and information technologies, leading to more efficient solar cells, batteries, solid oxide fuel cells, faster transistors, and more powerful capacitors.

The research team, led by ORNL’s Ho Nyung Lee, demonstrated that a single unit cell layer of lanthanum aluminate grown on a strontium titanate substrate is sufficient to stabilize a chemically and atomically sharp interface. A unit cell is the smallest group of atoms that possess the properties of a crystalline material.

“This means that we can now create new properties by precisely conditioning the boundary in the process of stacking different oxides on top of each other,” said Lee, a member of the Materials Science and Technology Division.

What’s especially noteworthy is that a layer even one unit cell thick could serve as a buffer and dramatically improve the interface quality.

For this research, Lee and colleagues used pulsed laser deposition to deposit lanthanum aluminate thin films on strontium titanate substrates. They were able to demonstrate that a mundane variable such as the oxygen pressure during deposition of lanthanum aluminate is the key factor for achieving atomically sharp interfaces and changing the interface properties on a single unit cell level. Importantly, this finding is not limited to fine-tuning this particular interface, but also applies to a broad range of oxide heterostructures in a class of minerals known as perovskites.

The discovery of electrical properties in oxides—ordinarily insulators—has generated excitement and potentially creates the possibility that oxide electronics could become an alternative to the current semiconductor technology based on silicon.

Making this finding possible was Argonne National Laboratory’s Advanced Photon Source and the extreme brightness of synchrotrons that allowed scientists to study the structure and composition at the interface.

“The sophisticated surface X-ray diffraction methods available at the Advanced Photon Source were key to zeroing in on the origin of the interface behavior,” said co-author and colleague Gyula Eres.

While previous research with lanthanum aluminate thin film growth used low oxygen pressures, Lee and colleagues systematically explored the effects of oxygen pressure in a wide range. They determined that a shielding layer of lanthanum aluminate grown at high oxygen pressure followed by continued growth at a lower pressure resulted in a highly ordered atomically and chemically sharp—essentially defect-free—interface.

Other ORNL authors of the paper, titled “Atomic Layer Engineering of Perovskite Oxides for Chemically Sharp Heterointerfaces,” are Woo Seok Choi, the first author, Christopher Rouleau, and Sung Seok Seo. Other institutions contributing to the paper are the University of Kentucky, Argonne National Laboratory, and the University of Science and Technology of China.

Funding for this research was provided by the DOE Office of Science, which also supports the Advanced Photon Source. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States. For more information, please visit http://science.energy.gov/.

UT-Battelle manages ORNL for DOE’s Office of Science.

Filed Under: Science, Top Stories Tagged With: Advanced Materials, Advanced Photon Source, Argonne National Laboratory, Gyula Eres, Ho Nyung Lee, insulators, lanthanum aluminate, Materials Science and Technology Division, Oak Ridge National Laboratory, ORNL, oxide thin films, oxides, strontium titanate

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recent Posts

  • Flatwater Tales Storytelling Festival Announces 2025 Storytellers
  • Laser-Engraved Bricks Will Line Walkway of New Chamber Headquarters
  • Democratic Women’s Club to Discuss Climate Change, Energy and Policy
  • Estate Jewelry Show at Karen’s Jewelers Features Celebrity Jewelry
  • Keri Cagle named new ORAU senior vice president and ORISE director
  • ORAU Annual Giving Campaign exceeds $100,000 goal+ORAU Annual Giving Campaign exceeds $100,000 goal More than $1 million raised in past 10 years benefits United Way and Community Shares Oak Ridge, Tenn. —ORAU exceeded its goal of raising $100,000 in donations as part of its internal annual giving campaign that benefits the United Way and Community Shares nonprofit organizations. ORAU has raised more than $1 million over the past 10 years through this campaign. A total of $126,839 was pledged during the 2024 ORAU Annual Giving Campaign. Employees donate via payroll deduction and could earmark their donation for United Way, Community Shares or both. “ORAU has remained a strong pillar in the community for more than 75 years, and we encourage our employees to consider participating in our annual giving campaign each year to help our less fortunate neighbors in need,” said ORAU President and CEO Andy Page. “Each one of our employees has the power to positively impact the lives of those who need help in the communities where we do business across the country and demonstrate the ORAU way – taking care of each other.” ORAU, a 501(c)(3) nonprofit corporation, provides science, health and workforce solutions that address national priorities and serve the public interest. Through our specialized teams of experts and access to a consortium of more than 150 major Ph.D.-granting institutions, ORAU works with federal, state, local and commercial customers to provide innovative scientific and technical solutions and help advance their missions. ORAU manages the Oak Ridge Institute for Science and Education (ORISE) for the U.S. Department of Energy (DOE). Learn more about ORAU at www.orau.org. Learn more about ORAU at www.orau.org. Like us on Facebook: https://www.facebook.com/OakRidgeAssociatedUniversities Follow us on X (formerly Twitter): https://twitter.com/orau Follow us on LinkedIn: https://www.linkedin.com/company/orau ###
  • Children’s Museum Gala Celebrates the Rainforest
  • Jim Sears joins ORAU as senior vice president
  • Oak Ridge Housing Authority Receives Funding Assistance of up to $51.8 Million For Renovating Public Housing and Building New Workforce Housing
  • Two fires reported early Friday

Search Oak Ridge Today

Copyright © 2025 Oak Ridge Today